
The dvdisaster Reed-Solomon Codec specification

The dvdisaster development team

support@dvdisaster.org

00111

01110
10011

Version 1.01

Abstract

This is the blue manual, describing the data formats of the dvdisaster Reed-Solomon

codecs which are currently called RS01, RS02 and RS03. The codecs create Reed-Solomon

parity data to protect data stored on optical media. Depending on the codec, parity data can

either be stored in a separate file or be integrated with the .iso image on the same medium.

See https://dvdisaster.jcea.es/for additional resources on the dvdisaster pro-

ject, e.g. for the orange manual (manual.pdf) containing information for end users.

Target audience. This paper is primarily intended as a working base for the dvdisaster de-

velopers and, when the final version has been crafted, as an implementation guide for third

party developers who wish to create and process dvdisaster error correction data. It is neither

intended nor suitable as end-user documentation; for usage information please refer to the

online documentation at https://dvdisaster.jcea.es/.

Prerequisites. This paper assumes profound knowledge of coding theory and the underlying

math. The reader is assumed to have a thorough understanding of Reed-Solomon codes, both

in theory and from an implementation viewpoint. A basic understanding of programming in C

is also assumed.

Copyright 2008-2015 Carsten Gnörlich.

Copyright 2021 The dvdisaster development team.

Verbatim copying and distribution of this entire article is permitted in any medium, provided

this notice is preserved.

https://dvdisaster.jcea.es/
https://dvdisaster.jcea.es/


page 2 of ?? Changelog

1 Changelog

Clarifications of specifications (without actual changes of implementations) are numbered with

lowercase letters, e.g. V1.00a, V1.00b etc.

Changes which affect the implementation of codecs are indicated by increasing version num-

bers, e.g. V1.00, V1.01. Version numbering is independent for each codec.

1.1 RS03 codec

V1.00 supported since dvdisaster version V0.79.4

Clarified: RS03 header does not contain copy of first CRC sector (appendix ??).

Added sectorsPerLayer field in Ecc header and CRC block format.

Added ecc file specification.

1.2 RS02 codec

V1.01 supported since dvdisaster version V0.79.5

Added the sectorsAddedByEcc field in the EccHeader.

V1.00 supported since dvdisaster version V0.66

First draft of specification, open for review for missing parts and errors.

1.3 RS01 codec

V1.00 supported since dvdisaster version V0.66

First release of specification.

dvdisaster codec specification Version 1.01



Contents page 3 of ??

Contents

created: May 11, 2021 dvdisaster codec specification



page 4 of ?? The RS03 codec

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������

������
������
������
������

���
���
���

���
���
���

����
����
����
����

����
����
����
����

Data 2

Data 1
D

ata 3D
at

a 
n−

1

CRC

ECC m−1...

...

...

...

ECC m−2

Data
 n

EH padding

E
C

C
 m

E
C

C
 1

ECC 2

un
us

ed

Figure 1: Physical RS03 layout

2 The RS03 codec

This section describes the data format of the dvdisaster RS03 Reed-Solomon codec. RS03 can

store parity data either in a separate file or append it to the .iso image on the same medium.

In contrast to its predecessors RS03 is fully multi-threadable. RS03 is expected to become the

default codec soon after its introduction in dvdisaster 0.80.

2.1 Physical layout

Optical media are recorded as a single long spiral1 of sectors which are indexed beginning with

0. The first sector lies at the innermost position of the spiral and numbering continues onward

to the outside of the spiral.

Reed-Solomon encoding works best when errors are evenly distributed over all ecc blocks.

Therefore we must strive to spread our ecc blocks evenly over the media surface. To facilitate

such distribution, dvdisaster logically divides the medium into 255 units which are called “lay-

ers” for historical reasons. Figure ?? illustrates how a medium is divided into n data layers, one

CRC layer, and m ecc layers, with n +m+ 1 = 255. Ecc blocks are comprised by taking one

byte from each layer as shown in fig. ?? on the following page. This distributes the ecc block

reasonably good over the medium surface.

Layer size is measured in numbers of sectors which are 2048 bytes in size. All 255 layers

have the same size. The data layers map exactly to the iso image which is to be protected by

dvdisaster; e.g. the number and sequence of sectors in Data1, . . . , Datan is the same as in the

1Multiple layered media contain one spiral for each physical layer, but are otherwise conceptually identical.

dvdisaster codec specification Version 1.01



The RS03 codec page 5 of ??

Data 1 d i, 1

...

ECC m e i, m

ECC 1 e i, 1

CRC c i

Data n d i, n

...

d

e

e

c

i+1, 1

i+1, m

i+1, 1

i+1

...

...

...

...

d...

e...

e...

c i−1...

d...

i−1, m

i−1, 1

i−1, n

i−1, 1

ECC block i

padding

Figure 2: Logical RS03 layout

iso image. Two extra sectors are appended to the ISO image holding the ecc header “EH”; these

are logically treated as a part of the ISO image. If the ISO image size plus the two EH headers

is not an integer multiple of the layer size, the last (n-th) data layer will be padded accordingly.

The data layers are followed by a CRC layer. Each CRC layer sector contains a data structure

holding CRC32 checksums for the data sectors plus additional parameters which were used dur-

ing the RS03 encoding process. The data and CRC layers are protected by the Reed-Solomon

parity which is stored in the remaining layers (ECC1, . . . , ECCm). Since the medium capac-

ity is not necessarily an integer multiple of 255, some unused sectors remain at the end of the

medium. These are neither written nor referenced in any way.

The RS03 data can be stored either directly on the medium or into a separate file. Figure ??

shows the first case where ecc data is embedded into the image; this is also called a “RS03

augmented ISO image” in dvdisaster terminology. In the other case a separate error correction

file will be created containing the sectors starting with the EH header. The following discussion

is based on the augmented image case; see section ?? for handling the file based format.

2.2 Logical layout

The relationship between layers and ecc blocks is stated again in the logical view presented in

figure ??. Here the 255 layers are shown in stacked order. From each layer the i − th byte

corresponds to the i − th error correction block. The parity is calculated using n data bytes

di,1, . . . , di,n plus the crc byte ci. The resulting m roots of the completed Reed-Solomon code

created: May 11, 2021 dvdisaster codec specification



page 6 of ?? The RS03 codec

Medium type Maximum size Layer size

CD 359.424 1.409

DVD 1 layer 2.295.104 9.000

DVD 2 layers 4.171.712 16.359

BD 1 layer 11.826.176 46.377

BD 2 layers 23.652.352 92.754

Table 1: Sector size parameters for several media types

are then stored in the ecc bytes ei,1, . . . , ei,m.

Since the input iso image plus the two EH sectors is usually not an integer multiple of the

layer size, the last data layer datan may contain padding sectors containing a special signature.

The content of the padding sectors is used in the ecc byte calculation and is written into the

augmented image.

2.3 Calculating the layout for encoding

When encoding with RS03 the layout of the augmented image is fully specified by two values:

the maximum medium size and the iso image size (from now on, “size” always means “number

of 2048K sectors”).

Media sizes are hard coded and taken from table ??. Since we need to divide the medium into

255 layers, the layer size is:

layer size =

⌊

medium size

255

⌋

This allows us to compute the number of data layers needed to cover the iso image plus the ecc

header:

data layers =

⌈

iso image size + 2

layer size

⌉

The number of padding sectors in the last data layer is:

padding sectors = layer size ∗ data layers− iso image size− 2

For Reed-Solomon encoding, we will have to encode

n data bytes = data layers+ 1

and produce the following number of parity bytes:

m roots = 255− n data bytes

The RS03 augmented image must fill the medium completely (except for the medium size mod
255 sectors at the end). However for performance reasons the maximum redundancy is capped

to 200%, or 170 roots. This means that the ISO image must at least span the first 255-170=85

layers, otherwise additional padding will be added to fill up the 85 data layers. This situation is

not reflected in the calculations and figure shown above.

dvdisaster codec specification Version 1.01



The RS03 codec page 7 of ??

2.4 Re-calculating the layout from defective media

In order to recover a defective medium, the values of layer size and data layers need to be de-

termined. The RS03 format allows for three heuristics with increasing complexity for learning

about these values:

2.4.1 Using the Ecc Header

All required information can be obtained from the data structures of the Ecc Header which is

described in appendix ??. If ecc data is stored in a separate error correction file, the first 4096

bytes of the ecc file yield the Ecc Header. Otherwise, let n be the size of the ISO file system

which can be obtained from the ISO file system master block. Then the Ecc Header is typically

found in the RS03-augmented image at sectors n, n+ 1 or at n+ 150, n+ 151 (due to padding

inserted by some popular CD-R mastering software).

If the ISO file system master block is unreadable, the Ecc Header can be identified by its char-

acteristic signature and checksum. If the Ecc Header is encountered during reading of the

defective medium it might be worthwhile to generate a tentative ISO master block in the image

file. This would speed up future processing of the image; however current implementations of

dvdisaster do not yet implement this feature.

2.4.2 Using the CRC layer

Each CRC layer sector contains a data structure which not only holds the CRC32 checksums

but also a copy of important parameters from the Ecc header (see section ?? for details). CRC

sectors can be easily recognized by looking for their signature and checksum while scanning

the medium image. If dvdisaster finds a valid CRC sector and the Ecc header is defective, a

tentative Ecc header is written to the image to speed up further operations on the image file.

However it should be noted that since all CRC sectors are stored consecutively on the medium,

they can easily be wiped out by a large defective region on the medium. Therefore, another

heuristic exists for learning about the RS03 layout.

2.4.3 Evaluating the Reed-Solomon code

If neither the Ecc Header nor any CRC sectors are readable the RS03 layout can be determined

by the following heuristic.

First, the medium size is determined from table ??. This is always possible as long as the drive

will recognize the medium at all. Since the layer size is
⌊

medium size
255

⌋

, the location of the 255

layers on the medium is now known. The remaining task is to find out the redundancy of the

Reed-Solomon code, e.g. how many layers contain roots for the RS code.

Taking the i-th sector from each layer will produce a valid error correction block, but with

unknown redundancy. As RS03 will create redundancies using 8 to 170 roots, we employ

a brute-force approach by evaluating the Reed-Solomon code for 8..170 roots. If the error

correction is successful for n roots and the sector from layer 255-1-n yields the CRC data

structure, the correct number of roots has been found.

In reality, not all 162 combinations of roots need to tested since additional information can be

exploited:

created: May 11, 2021 dvdisaster codec specification



page 8 of ?? The RS03 codec

1. If the sector from layer 255-1-n is present/readable, we do not need to test for n roots any

further: Encoding with n roots would have produced a CRC sector in this place.

2. If the number of erasures (as indicated by unreadable sectors) is higher than n, we can

trivially skip the RS decoding. We might have to test another set of 255 sectors though if

testing for all other numbers of roots fails as well.

Criterion 1) should quickly narrow down the possible numbers of roots in the average case,

e.g. when enough redundancy is available for recovering the medium. Worst case behaviour of

trying each ecc block for 8..170 roots is likely to appear only when the medium is unrecoverable,

e.g. when more sectors are damaged than the Reed-Solomon code can correct.

2.5 Contents of the CRC layer

Each sector of the CRC layer contains the data structure shown in appendix ??. Following

the numbering from figure ??, CRC sector ci contains the CRC32 checksums for data sectors

dj,1, . . . , dj,n with j = (i + 1) mod layer size. The purpose of this offset is to have the error

correction of ECC block i recover the CRC checksum for the next ECC block i+ 1. In case of

readable but corrupted sectors this will keep the error correction in erasure mode and therefore

save precious redundancy (the RS code can recover twice as much errors when the location of

defective data is known).

Checksums for data sector dj,k are stored in array element CrcBlock->crc[k]. Unused array ele-

ments are set to zero. The remaining contents of the CRC sector structure provide configuration

and layout information; see appendix ?? for details.

2.6 Encoding the ecc layers

Encoding the error correction information requires reading and buffering of at least 255 sectors

comprising the ecc block (see fig. ?? for a definition of the ecc block). A possible encoding

algorithm might process each ecc block at a time. For each ecc block i it would do the following:

First, the n data sectors di,1, . . . , di,n of the ecc block are read in. The CRC layer sector ci is

initialized, filled in with checksums generated by processing the previous ecc block, and com-

pleted by calculating its own checksum selfCRC. Unused portions of ci remain zero. Afterwards

the CRC32 checksums of di,1, . . . , di,n are calculated and stored away using the same buffer-

ing mechanism. Since the hand-over of CRC checksums between ecc blocks is the only place

where RS03 does not fully parallelize, data sector I/O and CRC32 caching needs to be carefully

thought out in multithreaded implementations.

Once di,1, . . . , di,n and ci have been prepared, 2048 sets of a RS(255,k) code (with k = 255 −
n−1) are calculated by looping over the 2048 bytes of the ecc sectors. If l denotes a certain byte

position between 0, . . . , 2047 in the ecc block sectors, then the l-th byte from di,1, . . . , di,n, ci is

retrieved and fed into the RS(255,k) encoder. The resulting parity bytes p1, . . . , pm are stored in

byte position l of the ecc layer sectors ei,1, . . . , ei,m. When all 2048 bytes of the ecc block sectors

have been processed the ecc layer sectors can be written out; either into the error correction file

or into the RS03 augmented image.

dvdisaster codec specification Version 1.01



The RS03 codec page 9 of ??

The RS(255,k) encoder is the same for RS01, RS02 and RS03. See appendix ?? for the param-

eters used in the encoder.

2.7 Encoding as a separate error correction file

If the image size is too close to the medium capacity, not enough space is left for augmenting

the image with redundancy. dvdisaster will refuse to augment images when there is insufficient

space for at least 8 roots. Creating images with less than 43 roots (20% of redundancy) will

trigger a warning that the error correction capacity may be too low. In those cases, storing the

error correction information in a separate file comes as an alternative.

RS03 error correction files (“ecc files”) contain the same error correction information and layout

as in the augmented image case, with the following differences:

Omittance of data padding sectors. While the image format shown in figures ?? and ?? may

contain padding sectors between the ecc header and the CRC layer, those sectors are not written

into the ecc file. The padding sectors are however required during encoding and decoding,

e.g. they need to be virtually created in memory when processing the respective ecc blocks.

Therefore an ecc file providing nroots of redundancy will contain 2 + (nroots+1) * layer size

sectors. Physically it will contain the ecc header, then the CRC layer and finally the nroots ecc

layers. In contrast to the augmented image case, the ecc header is not part of an ecc block and

can therefore not be recovered by the error correction. If the ecc header is lost in an ecc file, its

contents can be reconstructed from a still existing block in the CRC layer and then be rewritten

accordingly.

Freely chooseable redundancy. In the augmented image case the redundancy is always cho-

sen to fill up the medium completely. For ecc files the redundancy can be freely chosen by

the user between 8 roots (3.2%) and 170 roots (200%). Encoding with more than 170 roots

is technically possible, but run-time requirements get out of proportion; hence the selectable

redundancy is capped at 200%.

As a consequence of the variable redundancy the ecc file layout can only be determined by

looking at the ecc header or CRC sectors. The strategy of experimentally evaluating the Reed-

Solomon code (see sub section ??) however can not be applied to ecc files since neither the size

of the padding area nor the original size of the possibly truncated image and ecc files can be

determined.

To see whether this is really a limiting factor we look at the typical outcome of recovering a

single file from a defective medium:

• The ecc file is fully read, but random sectors are damaged.

• The ecc file is truncated to the position of the first read error.

In both scenarios it is highly likely that at least one CRC sector survives at the beginning of the

file; in that case the error correction will not only recover the image but also repair the ecc file

into its original state.

created: May 11, 2021 dvdisaster codec specification



page 10 of ?? The RS03 codec

Although this gives RS03 ecc files good chances to remain functional even when being partly

damaged, it is highly recommended to store ecc files only on media which are themself being

protected by dvdisaster. ISO and UDF file systems do not have sufficient redundancy for their

meta data (e.g. directory structures). If such meta data becomes unreadable a significant number

of files may become completely inaccessible. Please note that this is a general weakness of file-

based data protection and recovery: The meta data is not part of any file and can therefore

not be protected by any error correction data put inside the file(s). This is the also the simple

reason why we did not use tools like PAR2 and developed dvdisaster instead; the image-based

approach of dvdisaster protects both files and meta data.

dvdisaster codec specification Version 1.01



The RS02 codec page 11 of ??

3 The RS02 codec

This section describes the dvdisaster RS02 Reed-Solomon codec. It was developed during the

winter of 2005/2006 in order to facilitate augmenting iso images directly with error correction

data.

RS02 is based on the Reed-Solomon encoders and decoders introduced with RS01, but focuses

exclusively on augmenting iso images. The allocation of data sectors within an ecc block fol-

lows a similar scheme as in RS01. However the layout of the parity bytes is vastly different

between RS01 and RS02, as the codec must cope with any parity sector being damaged or un-

readable. Consequently a RS02 image can lose as many sectors as allowed by the redundancy of

the error correction data, and the lost sectors can be any combination of data and parity sectors,

as it is expected from a Reed-Solomon scheme.

Unlike RS01, which will be completely superseded by RS03 soon, the case of RS02 vs. RS03

still remains open, as both codecs have their individual strengths. RS02 is slightly more space

efficient than RS03, so on CD media RS02 might provide slightly more redundancy (typically

one additional root) than RS03. This effect will be less pronounced on larger media like DVD

and BD. RS02 images can be augmented to an arbitrary size which may be smaller than the

maximum medium size, while RS03 requires augmenting the image to the full medium size.

This might favour RS02 for working on images which are only 30% or less of the medium size,

as they can be encoded with less than the maximum of 170 roots (the maximum redundancy

requires lots of time to compute, producing a three-fold redundancy which may not be needed in

all cases). On the other hand RS03 will counter the performance argument since it can encode

at least 20 times faster than RS02 on multi-core architectures, because RS02 encoding can not

be parallelized. See the end of section ?? for a speed comparison of RS01 vs. RS03; RS01

and RS02 are very similar performance-wise. Finally, the data layout of RS03 does not depend

on interspersed ecc headers which gives it a better robustness over RS02; see subsection ?? for

details.

3.1 Physical layout

RS02 must be applied to the .iso image before it is written to the medium. Additional sectors

are appended to the .iso image containing the parity data. The data structures of the .iso im-

age are not changed to reflect the new image size, so the original part of the augmented .iso

image remains untouched. The parity sectors can be removed from the augmented image by

simply truncating the .iso image to its original sector size; the resulting image file will have

the same contents as prior to the augmentation. As a side effect, the parity data is invisible to

applications reading the medium at the filesystem level, including most hardware media play-

ers. If you find a player which gets confused by media containing RS02 (or RS03) parity,

please consider telling the dvdisaster project about it. As of this writing, not a single device has

been reported to run into problems with the RS02 data scheme. The RS02 augmented image

might conflict with optical media writing software, though. If the writing software decides the

image length by looking at the iso filesystem structures, the parity data portion of the image

might not be written to the medium. Most current writing programs do however measure the

.iso image by examining its file size, and will transfer the parity data correctly. To be sure

you should follow the steps described under “Testing image compatibility” at the dvdisaster

created: May 11, 2021 dvdisaster codec specification



page 12 of ?? The RS02 codec

����
����
����
����

����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Data 1

Data n
EH CRC

EH

ECC 1

E
C

C
 1

D
ata 2

Data 3

...

...

D
at

a 
n−

1

ECC 2

E
H

ECC 3

E
C

C
 3

... E
C

C
 k

EH

ECC k−1

ECC k−1

EH

ECC k−2

E
C

C
 k−3

...ECC k−4

ECC k−4

Figure 3: Physical RS02 layout

site (http://dvdisaster.net/en/howtos92.html) once before using each version

of your optical media authoring software.

Like the other dvdisaster codecs, RS02 is based on a RS(255,k) Reed-Solomon code with each

ecc block being comprised of n data bytes and k parity bytes, and n + k = 255. The n data

bytes comprise the .iso image which will be written to the medium, and the additional ecc

header and CRC checksums added by dvdisaster. Reed-Solomon encoding works best when

errors are distributed evenly over all ecc blocks. Therefore we must strive to distribute the ecc

blocks evenly over the medium surface. To facilitate such mapping, dvdisaster logically divides

the medium into 255 logical units which are called “layers” for historical reasons. Figure ??

shows how the medium is divided into n data layers and k ecc layers, with n + k = 255. Ecc

blocks are created by taking on byte from each layer as shown in fig. ?? on the following page.

This distributes the ecc block reasonably good over the medium surface. All layers have the

same length in bytes, with the possible exception of data layer n. As the .iso image size plus

the size of one ecc header and the CRC data is usually not a multiple of the layer size, the n-th

data layer may be shorter than the layer size and considered to be filled up with a virtual zero

padding. The zero padding is not written out to the augmented image (note that data layer n is

intentionally drawn shorter in fig. ??), but it is used in the calculation of the respective parity

bytes.

dvdisaster codec specification Version 1.01

http://dvdisaster.net/en/howtos92.html


The RS02 codec page 13 of ??

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

Ecc Header
2048 Bytes

Ecc Header
2048 Bytes

d ls, 1

d ls, 2

ls, ke

ls, 1e

d i, 1 d i+1, 1d i−1, 1Data 1

d i, 2 d i+1, 2d i−1, 2Data 2

d i, nd i−1, nData n

e i, k e i+1, ke

e

i−1, k

i−1, 1

ECC block i

ECC k

ECC 1 e i, 1 e i+1, 1

...

...

d 1, 1

d 1, 2

d 1, n

e1, 1

e1, k

...

...

...

...

...

ns, nd...

...

...

paddingCRC checksums
(see zoomed view below)

c y1,1 c y1,2 ... c y1,n c y2,1 c y2,2 ... c y2,n ... c lss,1 ... c lss,n

...

...

dashed area: original .iso image

Figure 4: Logical RS02 layout

3.2 Logical layout

The data layout in the augmented image is shown in figure ??. Note that in this figure the data

is byte-indexed; e.g. d1,1 denotes the first data byte in the augmented image. Each layer has a

length of ls bytes, with the exception of data layer n which may be shortened (see subsection ??

for an exact calculation of its size). Some ecc layers my be interleaved with redundant copies

of the ecc header. The ecc header size is not included in the respective ecc layer size.

Data layers. A data layer index di,j refers to the i-th byte in the j-th data layer. The n data

layers are mapped in a linear fashion to the original iso image. d1,1 maps to the first .iso image

byte, and dns,n maps to the last .iso image byte (ns is the number of remaining iso image bytes

in the n-th data layer).

The last data layer is special because it does not only contain the rest of the iso image, but also

the ecc header and the CRC checksums. These extensions are logically treated as a part of the

iso image; their contents are used in the ecc data calculation and are therefore protected by the

ecc data. The ecc header follows immediately after byte dns,n and is 4096 bytes long. Its format

is described in appendix ??. For RS02, only the data fields marked with “all” or “RS02” are

relevant; all other fields should be set to zero.

Data layer n does also contain the CRC32 checksums of each data sector upto the ecc header.

If the .iso image contains s sectors, then the CRC field contains 4s bytes, rounded up to the

nearest multiple of 2048. CRC32 checksums are calculated over a whole CD sector comprising

2048 bytes. Let cy,j be the 4-byte checksum of the y-th sector in the j-th layer and lss be the

number of sectors in each layer. Then cy,j = CRC32(d2048∗y,j , d2048∗y+1,j , . . . , d2048∗y+2047,j ).

y1 is usually not the first sector in the layer, but a later sector. In general, yi = (i+ offset) mod

lss. The offset is introduced to restore the CRC32 sums of ecc block i+1 during the correction

of ecc block i. This helps if the data portion of the image is corrupted with wrong byte values

created: May 11, 2021 dvdisaster codec specification



page 14 of ?? The RS02 codec

and the sectors containing the CRC32 sums have been lost. The error correction will start at

the ecc block i which is determined by the offset, and whose CRC32 checksums are stored in

the ecc header (at least one ecc header will be recovered before any error correction can begin).

Correcting ecc block i will recover the CRC32 checksums for ecc block i+1 in the image (and

possibly some more in advance, as less than 2048 bytes are required for one set of checksums).

This makes it possible to detect corrupted bytes by the checksums and flag them as erasures

which effectively doubles the error correction capabilities of the Reed-Solomon code.

Ecc layers. For an image augmented with k roots, the parity bytes will be spread over k ecc

layers. In order to calculate the first ecc block, bytes d1,1 to d1,n are taken from the n data

layers. The RS(255,k) code is calculated (see appendix ?? for its parameters) and the resulting

k parity bytes e1,1 to e1,k are stored in the k ecc layers. The next ecc blocks are calculated and

stored accordingly; ecc block i is marked grey in the figure. Care must be taken to honour the

non-linear mapping of ecc layer bytes as the ecc area is interleaved with 20-40 copies of the ecc

header. The ecc header copies are placed at sector addresses whose numbers are large powers

of two. This makes it possible to heuristically search for them during the decoding boot-strap

process when no other information (image size, layer size, etc.) is yet available. See section ??

on the search heuristics and section ?? on calculating ecc bytes positions from the non-linear

mapping.

3.3 Calculating the image layout for encoding

The image layout can be either computed automatically to fill up the medium as much as possi-

ble, or by user selected criteria such as a maximum image size or a specified redundancy.

3.3.1 Automatic layout calculation

The only available inputs to automatic layout detection are the .iso image size and a table of

maximum media sizes (see tab. ?? in the RS03 section for the respective values). From the

media size table the smallest possible medium is chosen which can contain the .iso image.

In some border cases, with e.g. the .iso image being only 100 sectors smaller than the medium

capacity, the automatic layout calculation will fail later due to insufficient space on the medium.

In such cases, the user must decide between choosing the next larger medium size or splitting

the image contents onto two media by himself (splitting a 700MiB CD image onto two CDs

may be better than writing it to a DVD).

From now on, all calculations are given in numbers of 2048K sectors or sectors addresses un-

less noted otherwise. The number of sectors required for the CRC checksums can be directly

computed from the .iso image size:

crc sectors =
⌈

4 ∗ iso image sectors

2048

⌉

The total accumulated size of all data layers is the sum of the .iso image size, the number of crc

sectors and the two sectors required for the ecc header. Since these sectors are protected by the

parity, they are called protected sectors:

protected sectors = iso image size + 2 + crc sectors

dvdisaster codec specification Version 1.01



The RS02 codec page 15 of ??

These calculations also produce two important sector addresses within the augmented image:

• The sector with address iso image size marks the location of the ecc header; and

• The sector at address iso image size + 2 marks the beginning of the CRC checksum

data.

The next step is to partition the protected sectors and the remaining medium space into an

optimal layer size. It is carried out iteratively.

For an approximate start, we determine the free space on the medium:

free space = medium capacity − protected sectors

and estimate a preliminary value for the number of roots and data layers:

k roots = min

(

170,

⌊

255 ∗ free space

medium capacity

⌋)

n data = 255− k roots

The maximum number of roots is capped at 170 which is approximately a three-fold redun-

dancy. Larger values would get too computationally expensive.

The preliminary layer size is then:

preliminary layer size =

⌈

protected sectors

n data

⌉

and the expected size of the parity layers is:

preliminary ecc size = k roots ∗ preliminary layer size

From these values we compute a 2p which has about 20-40 multiples in the preliminary ecc size

address space. This value will be used for interleaving the ecc header copies with the ecc layers:

p =

⌈

log2
preliminary ecc size

40

⌉

Now the chosen values might be actually too big since we haven’t taken the ecc header copies

into account. So the final task is to add up the number pf parity sectors and ecc header copies.

If these fit into the free medium space, we are done; otherwise the calculations are done again

with one root less.

created: May 11, 2021 dvdisaster codec specification



page 16 of ?? The RS02 codec

while(n roots > 7)

layer size :=
⌈

protected sectors

n data

⌉

ecc size := n roots ∗ layer size

first ecc header repeat addr :=
⌈

protected sectors

2p

⌉

∗ 2p

space for interleaved sectors := protected sectors+ecc size−first ecc header repeat addr

number of ecc copies :=
⌊

space for interleaved sectors

2p−2

⌋

+ 1

total added sectors := 2 + crc sectors+ ecc size + 2 ∗ number of ecc copies

If iso image sectors+ total added sectors < medium size, we have a valid layout: STOP.

Otherwise, set n roots := n roots−1 and n data := 255−n roots and do another iteration.

The iteration will either terminate with a valid layout or fail when n roots drops below the

minimum redundancy of 8 roots.

3.3.2 Layout calculation by user selected criteria

The user has several means of specifying a certain redundancy:

Specifying the maximum number of sectors for the augmented image. This case is simply

handled by setting medium capacity to the user selected sector size rather than using the max-

imum medium size from the built-in table. Afterwards, calculations continue as described in

section ??.

Specifying the number of roots to use. In this case we can skip the calculations for free

space and k roots as described in section ??, and instead set k roots directly to the user selected

value. Then the layout calculation proceeds as usual.

Specifying the percentage of redundancy to use. For a given number of k roots, the resulting

redundancy in percent is:

k roots · 100

255− k roots

Pick a suitable value for k roots so that the user selected value is met or slightly exceeded.

Proceed with the given number of roots as described in the previous paragraph.

3.3.3 Layout calculation from ecc header information

In a given ecc header struct eh, the number of sectors in the .iso image is recorded as eh->sectors

and the number of roots is contained in eh->eccBytes. Calculation of the layout is done as

shown in section ??, with the exception of omitting the calculation for free space and setting k

roots directly to eh->eccBytes.

dvdisaster codec specification Version 1.01



The RS02 codec page 17 of ??

3.4 Automatic layout calculation example

Let’s assume we are going to encode an .iso image of 295.000 sectors. This is well below the

CD medium capacity of 359.424 sectors, so we start with:

medium capacity = 359.424 sectors
iso image size = 295.000 sectors

The number of CRC sectors will be:

crc sectors =
⌊

4∗295.000
2.048

⌋

= 577 sectors

The total size of all data layers is:

protected sectors = 295.000 + 2 + 577 = 295.579 sectors

The next step is creating some preliminary starting values:

free space = 359.424− 295.579 = 63.845 sectors

k roots = min
(

170,
⌊

255∗63.845
359.424

⌋)

= min(170, 45) = 45 roots (or layers)

n data = 255− 45 = 210 layers

Now some more preliminary values can be computed:

preliminary layer size =
⌈

295.579
210

⌉

= 1.408 sectors

preliminary ecc size = 45 ∗ 1.408 = 63.360 sectors

Finally, we compute p = 11 since 63360
211

= 30, 9.

Now the chosen values must be verified to produce a layout which is still smaller than the image

size. We compute (the first two values are already known):

layer size =
⌈

295.579
210

⌉

= 1.408 sectors

ecc size = 45 ∗ 1.408 = 63.360 sectors

first ecc header repeat addr =
⌈

295.579
2048

⌉

∗ 2048 = 296.960

space for interleaved sectors = 295.579 + 63.360− 296.960 = 61.979 sectors

number of ecc copies =
⌊

61.979
2048−2

⌋

+ 1 = 31 header repeats

total added sectors = 2 + 577 + 63.360 + 2 ∗ 31 = 64.001 sectors

This layout will generate an augmented image containing 295.000 + 64.001 = 359.001 sectors

which is less than the medium capacity of 359.424 sectors and therefore accepted.

3.5 Re-calculating the layout from defective media

In order to recover a defective medium, at least one ecc header must remain readable and be

located by the following heuristic. This is a major difference to RS03, which has more and

different means for bootstrapping the recovery (see section ?? for details). Once one ecc header

has been recovered, the ecc data layout can be calculated as described in section ??. From this

point, the error correction is done using the parameters and data described in section ??.

If the medium is not damaged or only slightly damaged, the following short cut might work:

The size of the .iso image can be determined from the iso file system header. Then the ecc

header immediately following the .iso image part of the augmented image is either located at

created: May 11, 2021 dvdisaster codec specification



page 18 of ?? The RS02 codec

sector number iso image size or iso image size + 150. The latter case arises because some

popular CD authoring software appends 150 padding sectors to any .iso image it creates.

If the short cut does not work due to the required sectors being damaged, the following strategy

is employed. The size of the augmented image can always be determined; it can either be

queried from the drive or it is the file size of a file-based image. Then apply the following

algorithm:

p = ⌊log2(image size)⌋

while p > 32

pos =
⌊

image size

2p

⌋

· 2p

while pos > 0

if sector at pos is a valid ecc header: STOP.

if sector at pos is unreadable, set pos := pos− 2p .

Continue with inner while loop.

if sector at pos is readable and not a ecc header, set p := p− 1 .

Continue with outer while loop.

In order to test for a valid ecc header, check that ec->cookie equals the 16-byte string “*dvdis-

aster*RS02”. Then check that the CRC32 sum of the ecc header matches the value recorded in

eh->selfCRC, with eh->selfCRC set to the byte sequence 0x47,0x50,0x4c,0x00 for the purpose

of calculating the CRC32 sum.

Please notice that during testing of the sectors at multiples of 2(p−1), all sectors previously

tested for 2p will be examined again. It is therefore highly recommended to cache results from

previous iterations of the outer while loop, especially when reading sectors from the optical

medium.

3.6 Sector addressing and initialization scheme

For encoding and decoding purposes it is required to retrieve the i-th sector from the j-th data

or ecc layers, e.g. to calculate the corresponding sector number in the augmented image. The

reverse calculation is also needed, e.g. to calculate the corresponding layer and sector index for

a given sector number in the augmented image.

Bear in mind that as shown in figure ??, an augmented image is divided into two logical parts.

There is a data area containing the .iso image contents, the first ecc header and the CRC check-

sums. The data area is protected by the parity in the ecc area, which contains the parity data

interleaved with copies of the ecc header.

In order to carry out the calculations described below, the following values from the layout

calculation (see section ?? are required:

protected sectors the size of the data part in sectors

layer size the number of sectors per layer

2p the modulo value for locating ecc header copies

dvdisaster codec specification Version 1.01



The RS02 codec page 19 of ??

Converting (layer, sector index) pairs into image sector numbers. The i-th sector of data

layer j has the following address s in the image:

s = j · layer size + i

If s >= protected sectors, s is a padding sector which must not be read from the image file,

but created in memory (see the paragraph on initialization below).

To calculate the sector address es of the i-th sector from the j-th ecc layer, the non-linear map-

ping of the ecc sectors has to be taken into account. The index of the first interleaved ecc header

is:

first interleaved =

⌈

protected sectors

2p

⌉

· 2p

Since protected sectors is equal to the address of the first ecc sector in the image, the amount of

ecc sectors before the first interleaved ecc header is:

base ecc sectors = first interleaved − protected sectors

The ecc sector we are looking for would have the following index if ecc sectors were linearly

mapped:

ecc index = j · layer size + i

If ecc index < base ecc sectors, es = protected sectors + ecc index. Otherwise, the non-linear

mapping must be taken into account. The number of interleaved ecc headers before the (cur-

rently unknown) sector position es is:

interleaved headers =

⌊

ecc index− base ecc sectors

2p − 2

⌋

Therfore the position of the ecc sector in the augmented image is:

es = protected sectors+ ecc index+ 2 · interleaved headers+ 2

Example. To continue the example from section ??, the position of the 17th ecc sector in the

3rd ecc layer shall be computed. The relevant layout values are:

protected sectors = 295.579

layer size = 1.408

2p = 2.048

The first interleaved ecc header is at position:

first interleaved =
⌈

295.579

2.048

⌉

· 2.048 = 296.960

Before the first interleaved ecc header,

created: May 11, 2021 dvdisaster codec specification



page 20 of ?? The RS02 codec

base ecc sectors = 296.960− 295.579 = 1.381

ecc sectors have been stored. The linear index of the sought ecc sector is:

ecc index = 3 · 1.408 + 17 = 4.241

Since 4.241 ≥ 1.381, the embedded ecc headers must be taken into account. There are

interleaved headers =
⌊

4.241− 1.381

2.048− 2

⌋

= 1

interleaved ecc headers, each containing 2 physical sectors. Therefore the position of the sought

ecc sector in the image is:

es = 295.579 + 4.241 + 2 + 2 = 299.824

Converting image sector numbers into (layer, sector index pairs).

If the sector number s < protected sectors, the sector will map to the data part as follows:

layer = ⌊s / layer size⌋

i = s mod layer size

Otherwise, the mapping to the ecc part is calculated as follows. The index of the first interleaved

ecc header is:

first interleaved =

⌈

protected sectors

2p

⌉

· 2p

If s mod 2p ≤ 1, the sector maps to the n-th interleaved ecc header, with:

n =

⌊

s− first interleaved

2p

⌋

If s < first interleaved, the sector is an ecc parity sector with the following mapping:

layer = ⌊(s− protected sectors) / layer size⌋

i = (s− protected sectors) mod layer size

If s ≥ first interleaved, the mapping of the ecc parity sector is calculated as follows:

The amount of ecc sectors before the first interleaved ecc header is:

base ecc sectors = first interleaved − protected sectors

The number of interleaved ecc headers before sector s is:

interleaved headers =

⌊

s− first interleaved − 2

2p

⌋

If ecc sectors were mapped linearly, then s had the linear index:

ecc index = s− protected sectors− 2 · interleaved headers− 2

Finally, this means that s maps to the following parity sector:

layer = ⌊ecc index / layer size⌋

i = ecc index mod layer size

dvdisaster codec specification Version 1.01



The RS02 codec page 21 of ??

Padding sectors. Let iso image size be the size of the .iso image prior to augmenting it with

error correction data. In order to augment the image with error correction sectors, the following

sectors are treated as padding sectors which are filled with zeroes:

• All sectors s > protected sectors.

• The first ecc header (sectors iso image size and iso image size + 1).

The first ecc header sectors must be treated as padding to break a circular dependency with the

parity bytes; as the ecc header contains a md5 sum over all parity bytes, it can not be used as

input for the parity generation.

3.7 Encoding the checksums

For each sector of the .iso image a CRC32 checksum is calculated and stored in the data part of

the augmented image (see fig. ??). By using the conventions of section ??, let di,j be the i-th
byte of the j-th data layer and c(y, j) the 4-byte checksum of the y-th sector in the j-th data

layer. Then c(y, j) = CRC32(d2048∗y,j , d2048∗y+1,j , . . . , d2048∗y+2047,j).

Let first layer crc idx = (iso image size + 2) mod layer size.

n is the number of data layers.

A total of
⌈

iso image size

512

⌉

sectors holding the CRC32 checksums must be generated. The check-

sums are sorted by the layer sector y first, then by layer number i. So for each layer sector

y, there is a block of n checksums generated, and there are layer size blocks of checksums

total. Checksum generation does not start with layer sector 0, but rather with layer sector

first layer crc idx. Subsequent blocks are generated in ascending layer sector order mod-

ulo layer size so that all layer size layer sector positions are eventually covered. This scheme

produces the following sequence of checksums:

c((first layer crc idx+ 1) mod layer size, 1)
c((first layer crc idx+ 1) mod layer size, 2)
. . .

c((first layer crc idx+ 1) mod layer size, n)

c((first layer crc idx+ 2) mod layer size, 1)
c((first layer crc idx+ 2) mod layer size, 2)
. . .

c((first layer crc idx+ 2) mod layer size, n)

. . .

c((first layer crc idx+ layer size− 1) mod layer size, 1)
c((first layer crc idx+ layer size− 1) mod layer size, 2)
. . .

c(first layer crc idx mod layer size, n− 1∗)

c(first layer crc idx mod layer size, 1)
c(first layer crc idx mod layer size, 2)
. . .

c(first layer crc idx mod layer size, n− 1∗)

created: May 11, 2021 dvdisaster codec specification



page 22 of ?? The RS02 codec

∗) The last sectors of each data layer may be padding sectors. For those padding sectors, no

CRC32 checksums are generated and stored (e.g. the number of generated checksums is always

exactly iso image size).

Since iso image size is usually not a multiple of 512, the last sector in the data part may only be

partially filled with checksum data. The remaining bytes of this sector must be filled with the

repeated byte sequence 0x47,0x50,0x4c,0x00 which is the ASCII string representation of the

text “GPL”.

A copy of the CRC32 sums for the layer sectors at position (first layer crc idx mod layer size)

is stored in the ecc header, starting there at byte position 2048. This has the advantage that the

CRC checksums are already available for the first layer crc-th sectors of data layers 1, . . . , n.

Any corrupted bytes in those sectors are detected by the CRC32 and can be handled by the error

correction in erasure mode, saving precious parity bytes. When the error correction has restored

all sectors of the first layer crc-th ecc block, note that the first layer crc-th sector of data layer

n will contain the CRC32 checksums for the data sectors in the next ecc block (first layer crc +

1). Therefore the layout is robust against loss of CRC sectors as they are restored by the error

correction just before they are actually needed.

3.8 Encoding the ecc layers

Encoding the ecc layers requires the following steps:

First the image must be examined whether it does already contain augmented ecc data (either

RS02 or RS03). If ecc data is found, the image must be stripped to the original size of the .iso

image. Nesting ecc data is not supported by the current codecs and it might derail the heuristics

for detecting the augmented data properly. From a technical point, nesting ecc data does not

make sense either.

Next the image must be checked for missing sectors, and be rejected if it is incomplete. Produc-

ing and writing images with missing sectors to a medium is confusing to the user as dvdisaster

will always report the medium as partially readable even though it does not contain any physical

defects. Also the error correction will never succeed for such media as it is just restoring the

sector in its missing state. During the check for missing sectors the CRC32 checksums of each

sector can be computed as described in section ?? and, after writing a placeholder for the first

ecc header, be appended to the image. Also, the MD5 sum of the .iso image can be calculated

at this time and kept for insertion into the ecc header field ec->mediumSum. As another step of

preparation, enough space should be appended to the image to store the ecc layer sectors. This

makes sure that the encoder does not run out of disk space during its potentially lenghty work,

and minimizes the impact of fragmentation due to random writes into the appended image area

under most file systems.

Finally, the error correction information needs to be encoded. Please refer to fig. ?? on the

location of the bytes comprising an error correction block. Although the ecc blocks could be

encoded by a byte-wise scheme, a possible encoding algorithm would preferably buffer at least

the 255 sectors holding the required data for 2048 subsequent ecc blocks, and process those in

bulk. From the first n data layers, the required bytes are retrieved and fed into the RS(255,k)

Reed-Solomon encoder, with k = 255−n. The RS(255,k) encoder is the same for RS01, RS02

and RS03. See appendix ?? for the parameters used in the encoder.

dvdisaster codec specification Version 1.01



The RS02 codec page 23 of ??

Please refer to the previous section on information about zeroed-out and zero-padded data sec-

tors. The resulting k parity bytes are distributed into the k ecc layers. When writing out the ecc

data into the image, free gaps must be left for the interleaved ecc headers; see section ?? for

information on calculating the interleaved ecc header positions. At this time, the MD5 sums of

each ecc layer can be updated incrementally.

When all parity sectors have been calculated, the ecc headers can be completed by filling in

their eh->eccSum field. This field contains the MD5 sum calculated over the MD5 sums over

each of the k ecc layers. In contrast to a single MD5 sum spanning the ecc layers in a linear

fashion, this approach allows for an incremental calculation of the MD5 sum while the ecc data

is generated and written out.

created: May 11, 2021 dvdisaster codec specification



page 24 of ?? The RS01 codec

4 The RS01 codec

This section describes the dvdisaster RS01 Reed-Solomon codec. It was conceived during the

summer of 2004 for creating error correction files in the first dvdisaster versions. At this time,

CD media was still predominant. Typical machines were based on Pentium 4 (tm) processors.

Measured by todays standards physical RAM and hard disk space were scarce, and especially

hard disk random I/O was extremely slow.

In order to work efficiently with the available technology, RS01 was designed to be as space

efficient as possible and to minimize hard disk random access. Optimizing the data layout for

random access efficiency lead to a parity byte distribution which left the error correction file

vulnerable to being damaged. RS01 was occasionally being critcized for not being able to

recover from damaged error corrction files, but these points were not really fair. RS01 error

correction files were never designed for being stored on fragile media. They are supposed to be

either stored on hard disk, or to be stored on optical media which itself is protected by dvdisaster

error correction which has the following consequences: Unlike optical media, hard disks do not

degrade gradually. Hard disks are usually either 100% readable or completely dead, so we can

assume that error correction files on hard disk are either completely readable or fully lost.

Storing error correction files on optical media is a different story. While an error correction file

could protect itself to some degree against lost sectors (as RS03 ecc files do), it is still prone

to the shortcomings of a file level error correction. The biggest disadvantage of file level error

correction is that there is no protection of file system meta data. If meta data like a directory

node becomes damaged, all files in the directory are lost regardless of the redundancy contained

within the files. Therefore any medium containing error correction files must be protected with

an image level error correction layer (by using RS01,RS02 or RS03 on the medium), since only

image level error correction avoids meta data sectors to become a single point of failure. See

the discussion at http://dvdisaster.net/en/qa32.html for more information on

the advantages of image level data protection over file level approaches.

Nevertheless, the time has come to phase out the RS01 codec. Consider creating an error

correction file with 32 roots for a 650MiB sized image using both codecs2:

codec ecc file size encoding time

RS01 94.58MiB 46.2s

RS03 96.68MiB 2.4s

RS03 is about 2.2% less storage efficient than RS01 since its data layout has been rearranged

for better parallelization. But this is made up by a 19-fold speed improvement as RS03 can use

multiple cores and SSE2 extensions (of course the speed improvement varies depending on the

hardware used). Since all other properties of RS03 do at least match those of RS01, it’s fair to

begin phasing out RS01 in dvdisaster.

dvdisaster V0.80 will be the first and only version featuring all three codecs. In version 0.82,

users will be presented a note the RS01 became deprecated. In subsequent releases support for

encoding RS01 will be removed. Of course, capabilities to use and decode RS01 will remain

in dvdisaster for umlimited time. Existing RS01 error correction files should remain in use and

there is be no need to replace them with RS03 ones.

2The benchmark was done using the GNU/Linux version of dvdisaster 0.79.4 on a AMD Athlon(tm) II X4

615e processor. RS03 used all 4 cores of the machine. Both image and ecc files were stored in /dev/shm to rule

out I/O effects.

dvdisaster codec specification Version 1.01

http://dvdisaster.net/en/qa32.html


The RS01 codec page 25 of ??

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Data 2

Data 1

D
ata 3D

at
a 

n−
1

...

...

Data
 n

padding

Figure 5: Interpretation of physical layout in the .iso image

4.1 Physical layout

RS01 is meant to protect data which has already been written to an optical medium, so the parity

data can not be appended to the medium and must instead be kept in a separate error correction

file. Like all dvdisaster codecs, RS01 is based on a RS(255,k) Reed-Solomon code with each

ecc block being comprised of n data bytes and k parity bytes, and n+ k = 255.

The n data bytes are taken from an iso image generated from the medium. Reading data di-

rectly from the optical drive during encoding would slow down the process tremendously due

to massive random access over the medium, and quickly wear out the drive mechanics. However

producing the .iso image takes one fast linear read, accesses the drive in a way it is designed to

be used, and puts the data on hard disk which can sustain the needed random access I/O.

Reed-Solomon codes work best when errors are evenly distributed over all ecc blocks. There-

fore the n data bytes used for creating an ecc block must be picked from locations which are

evenly distributed over the medium with a maximum distance between each data byte pair. To

obtain a suitable data distribution, it is taken into account that optical media are recorded as a

single long spiral3 of sectors each containing 2048 bytes. The first sector lies at the innermost

position of the spiral and is indexed with 0; numbering continues onward to the outside of the

spiral. The .iso image contains a 1:1 mapping of this storage scheme, with the first 2048 bytes

holding the contents of sector 0, the next 2048 bytes resembling sector 1, and so on.

When encoding with n data bytes per ecc block, the iso image is divided into n layers which

physically map to the medium as shown in fig.??. This distributes the ecc block reasonably

good over the medium surface. However since the image size does not need to be a multiple of

the layer size, the n-th layer may be physically shorter as the layer size. For encoding purposes,

the non-existant sectors in layer n are treated as sectors being filled with 2048 zero bytes.

3Multiple layered media contain one spiral for each physical layer, but are otherwise conceptually identical.

created: May 11, 2021 dvdisaster codec specification



page 26 of ?? The RS01 codec

d i, 1

Ecc Header
(4096 bytes)

2, nd

1c sc
1, 1e 1, ke 2, 1e

...

Data 2 ... ... d ls, 21, 2 2, 2dd d i, 2

Data n ...
1, n x, n zero padding

Data 1 ... ... d ls, 1d1, 1 2, 1d

... ...

E
C

C
 fi

le
IS

O
 im

ag
e

d d

Figure 6: Logical RS01 layout

4.2 Logical ecc file layout

The ecc file layout, and therefore the relationship between the iso image contents and the ecc

file, is shown in figure ??. The first 4096 bytes of the ecc file contain the ecc header whose

format is described in appendix ??. For RS01, only the data fields marked with “all” or “RS01”

are relevant; all other fields should be set to zero.

Next to the ecc header comes the CRC section of the ecc file. If the iso image contains s sectors,

the next 4 ∗ s bytes in the ecc file contain the CRC32 sums of the sectors from the iso image:

Let b1, . . . , b2048 denote the bytes of the first data sector; b2049, . . . , b4096 those of the second data

sector and so on. Then c1 = CRC32(b1, . . . , b2048), c2 = CRC32(b2049, . . . , b4096) etc. Note

that in contrast to RS02 and RS03, bytes from the CRC section are not included into the ecc

block calculation and are therefore not protected by ecc.

The remainder of the ecc file contains the parity bytes of the ecc blocks. For an ecc file built

with k roots, the iso image is logically divided into n = 255 − k layers as shown in figure ??.

The di,j denote the i − th byte in the j − th layer. In order to create the first ecc block, bytes

d1,1 to d1,n are taken from the n layers. Then the RS(255,k) code is calculated (see appendix ??

for its parameters) and the resulting k parity bytes e1,1 upto ek,1 are stored in the ecc file. The

resulting ecc block is marked grey in the figure. The next ecc blocks are calculated and stored

accordingly. In total, the ecc section contains k∗ ls bytes of parity information, with the k parity

bytes of each ecc block being stored consecutively.

dvdisaster codec specification Version 1.01



The RS01 codec page 27 of ??

4.3 Calculating the layout for encoding

The RS01 layout is fully determined by the number of roots for the error correction code and

the iso image size in sectors (from now on, “size” always means “number of 2048K sectors).

The number of roots can be freely chosen by the user from the range of [8...100]. The iso image

size is directly measured from the iso image file.

The number of data layers is simply calculated from the number of roots, k:

data layers = 255− k

The size of each layer is:

layer size =

⌈

medium size

data layers

⌉

At the end of the last layer, data layers∗ layer size−medium size zero filled padding sectors

are used in the encoding process.

4.4 Getting the layout when recovering defective media

The required parameters are taken from the ecc header stored in the error correction file (see

appendix ??). Especially, the number of roots are taken from the eccBytes field and the medium

size is recorded in the sectors field.

4.5 md5 checksums

RS01 provides two md5 checksums for integrity checking. The md5 sum of the iso image is

calculated and stored in the mediumSum field of the ecc header. Another md5 sum is calculated

over the ecc file, excluding the first 4096 bytes, and stored in the eccSum field of the ecc header.

It can be used to verify the integrity of the ecc file itself. The ecc header is protected by its own

CRC checksum which is stored in the selfCRC field.

The md5 checksum generation is the major obstacle for parallelizing the encoder. In RS03,

md5sum generation has been made optional since the RS03 layout allows suffcient consistency

checks by doing a quick error syndrome check using the Reed-Solomon code.

4.6 Special cases

Error correction files can be created for any type of input files, not just iso files, as long as the

input files are “reasonably” long4. Since input files are processed in units of 2048 kByte sectors,

files whose byte size is not an integer multiple of 2048 are virtually padded with zeroes. In that

case, the inLast field of the ecc header contains the real byte size of the last file “sector” so that

recovering the last file sector does not write out the padding bytes. A size of zero in the inLast

field means that the last sector contains 2048 bytes.

4Input files should contain at least 2048*(255-k) bytes, so that there is at least one sector for each data layer.

created: May 11, 2021 dvdisaster codec specification



page 28 of ?? The common Ecc header format

A The common Ecc header format

The ecc header is defined in the include file dvdisaster.h. Its C definition is as follows:

typedef struct EccHeader

{ gint8 cookie[12]; /* ”*dvdisaster*” */

gint8 method[4]; /* e.g. ”RS01” */

gint8 methodFlags[4]; /* 0-2 for free use by the respective methods; 3 see above */

guint8 mediumFP[16]; /* fingerprint of FINGERPRINT SECTOR */

guint8 mediumSum[16]; /* complete md5sum of whole medium */

guint8 eccSum[16]; /* md5sum of ecc code section of .ecc file */

guint8 sectors[8]; /* number of sectors medium is supposed to have w/o ecc*/

gint32 dataBytes; /* data bytes per ecc block */

gint32 eccBytes; /* ecc bytes per ecc block */

gint32 creatorVersion; /* which dvdisaster version created this */

gint32 neededVersion; /* oldest version which can decode this file */

gint32 fpSector; /* sector used to calculate mediumFP */

guint32 selfCRC; /* CRC32 of EccHeader (currently RS02 only) – since V0.66 –*/

guint8 crcSum[16]; /* md5sum of crc code section of RS02 .iso file */

gint32 inLast; /* bytes contained in last sector */

guint64 sectorsPerLayer; /* layer size for RS03 */

guint64 sectorsAddedByEcc;/* sectors added by RS02 */

gint8 padding[3960]; /* pad to 4096 bytes: room for future expansion */

} EccHeader;

The ecc header is used in all ecc formats (RS01, RS02, RS03) of dvdisaster, but not all fields

apply to all formats. See the following table for the meaning and usage of the fields:

Field Usage Format(s)

cookie Magic byte sequence for recognizing the header.

Contains the string *dvdisaster*.

all

method 4 characters describing the format; currently allowed:

RS01, RS02, RS03.

all

methodF lags 4 bytes for further specification of the format.

Byte 0 contains the following flag:

Bit 0 - The mediumSum field is valid. RS03

Bit 1 - Set to 1 in ecc files. RS03

Bytes 1-2 are unused in the current methods.

Byte 3 contains the following flags:

Bit 0 - ecc data was created by a development release.

Bit 1 - ecc data was created by a release candidate.

If these bits are present, the user will be hinted that he is

using ecc data from a non-stable dvdisaster version.

all

(continued on next page)

dvdisaster codec specification Version 1.01



The common Ecc header format page 29 of ??

mediumFP The md5sum of the sector specified by the fpSector. The

sector should be chosen to have a huge probability being

unique to the medium; currently sector 16 (the ISO filesys-

tem root sector) is used.

all

mediumSum The md5sum of the ISO image. For RS01 this is the

md5sum of the whole image; for RS02 it is calculated for

the original ISO image (without the added RS02 sectors).

RS03 uses this value only when bit 1 in methodFlags is set.

all

eccSum On RS01 this is the md5sum of the ecc file excluding the

first 4096 bytes. For RS02 this is the md5sum calculated

over the md5sums of the nroots ecc layers. RS03 does not

use this value.

RS01, RS02

sectors For error correction files this is the number of sectors in

the protected medium. If augmented images are used, this

denotes the number of sectors in the original ISO image

(without the added RS02/RS03 sectors).

all

dataBytes The number of data layers, including the CRC layer. all

eccBytes The number of ecc layers (= number of roots) for the parity.

dataBytes+ eccBytes = 255.

all

creatorV ersion The dvdisaster version used for creating this ecc data.

A decimal value 102345 would mean dvdisaster version

10.23.45.

all

neededV ersion The minimum dvdisaster version required for processing

this ecc data. Version encoding as above.

all

fpSector The sector used for calculating mediumFP . all

selfCRC A CRC32 checksum of the ecc header itself. Not used

header fields are set to zero and the selfCRC field is ini-

tialized to the value 0x4c5047 (little endian).

crcSum md5sum of the CRC layer in RS02 encoded images. RS02

inLast The number of Bytes contained in the last image sector.

This allows for encoding of files with arbitrary length, not

just ISO images. dvdisaster versions prior to V0.66 do not

use this field and always assume it to be 2048 which is the

default for iso images.

all

sectorsPerLayer The number of sectors per layer. RS03

sectorsAddedByEcc The total number of sectors (Headers, CRC, ECC) added. RS02

padding The ecc header is zero padded to a length of 4096 bytes.

Future codes may allocate additional space for the zero

padding. See the note below for usage of the upper 2048

bytes on RS02/RS03.

all

Byte 2048-4096 A copy of the first CRC layer sector. RS02

created: May 11, 2021 dvdisaster codec specification



page 30 of ?? RS03 CRC block format

B RS03 CRC block format

The crc layer contains 2048 byte blocks containing the data structure described below. Except

for the CRC32 checksums most of the information contained in this data structure is copied

from the Ecc Header described in appendix ??. The crc block format is defined in the include

file dvdisaster.h and has the following C definition:

typedef struct CrcBlock

{ guint32 crc[256]; /* Checksum for the data sectors */

gint8 cookie[12]; /* ”*dvdisaster*” */

gint8 method[4]; /* e.g. ”RS03” */

gint8 methodFlags[4]; /* 0-2 for free use by the respective methods; 3 see above */

gint32 creatorVersion; /* which dvdisaster version created this */

gint32 neededVersion; /* oldest version which can decode this file */

gint32 fpSector; /* sector used to calculate mediumFP */

guint8 mediumFP[16]; /* fingerprint of FINGERPRINT SECTOR */

guint8 mediumSum[16]; /* complete md5sum of whole medium */

guint64 dataSectors; /* number of sectors of the payload (e.g. iso file sys) */

gint32 inLast; /* bytes contained in last sector */

gint32 dataBytes; /* data bytes per ecc block */

gint32 eccBytes; /* ecc bytes per ecc block */

guint64 sectorsPerLayer; /* for recalculation of layout */

guint32 selfCRC; /* CRC32 of ourself, zero padded to 2048 bytes */

} CrcBlock;

The CrcBlock data structure is used in the CRC layer of RS03 augmented images only. RS02

has a similar CRC layer but uses a different concept for retrieving layout information from the

image. The following table describes the meaning and usage of the CrcBlock fields:

Field Usage

crc If this data structure is found in the i-th sector of the CRC layer, it

contains the CRC32 checksum for data sectors dj,1, . . . , dj,n, with j =
(i + 1) mod layer size. See figure ?? for details. Please note that the

crc[] array is filled starting from crc[0], and unused field are left zero.

cookie Magic byte sequence for recognizing the header.

Contains the string *dvdisaster*.

method 4 characters describing the format; currently only “RS03” may appear

here.
(continued on next page)

dvdisaster codec specification Version 1.01



RS03 CRC block format page 31 of ??

methodF lags 4 bytes for further specification of the format.

Byte 0 contains the following flags:

Bit 0 - The mediumSum field is valid.

Bit 1 - Set to 1 in ecc files.

Bytes 1-2 are unused in the current methods.

Byte 3 contains the following flags:

Bit 0 - ecc data was created by a development release.

Bit 1 - ecc data was created by a release candidate.

If these bits are present, the user will be hinted that he is using ecc data

from a non-stable dvdisaster version.

creatorV ersion The dvdisaster version used for creating this ecc data. A decimal value

102345 would mean dvdisaster version 10.23.45.

neededV ersion The minimum dvdisaster version required for processing this ecc data.

Version encoding as above.

fpSector The sector used for calculating mediumFP .

mediumFP The md5sum of the sector specified by the fpSector. The sector should

be chosen to have a huge probability being unique to the medium; cur-

rently sector 16 (the ISO filesystem root sector) is used.

mediumSum The md5sum of the original ISO image if the first bit in the methodFlags

field is set. Since md5sum generation can not be parallelized, the user

may opt not to calculate this checksum if multi core encoding is used.

dataSectors For error correction files this is the number of sectors in the protected

medium. If augmented images are used, this denotes the number of

sectors in the original ISO image (without the added padding and RS03

sectors).

inLast The number of Bytes contained in the last image sector. This allows for

encoding of files with arbitrary length, not just ISO images.

dataBytes The number of data layers, including the CRC layer.

eccBytes The number of ecc layers (= number of roots) for the parity.

dataBytes+ eccBytes = 255.

sectorsPerLayer The number of sectors per layer.

selfCRC A CRC32 checksum of the ecc header itself. Not used fields are set to

zero and the selfCRC field is initialized to the value 0x4c5047 (little

endian).

remaining bytes The CrcBlock is zero padded to a size of 2048 bytes.

created: May 11, 2021 dvdisaster codec specification



page 32 of ?? RS(255,k) encoding parameters and examples

C RS(255,k) encoding parameters and examples

dvdisaster uses a standard, non-shortened Reed-Solomon code with the following commonly

used parameters:

The Galois field tables are generated by the field generator polynomial 0x187 (1 +X +X2 +
X7+X8). The Reed-Solomon code generator polynomial is created using element 0x70 as first

consecutive root and the primitive element 0x0b.

As a starting point for testing your own implementation, some values and tables are shown

below. The logarithm and anti-logarithm tables in the Galois field are shown in tables ?? and

??. Please note that there is no need for hard-coding these tables as their contents can be

enumerated by using the field generator polynomial.

When encoding for 32 roots, the RS code generator polynomial will be:

01 5b 7f 56 10 1e 0d eb 61 a5 08 2a 36 56 ab 20 71 20 ab 56 36 2a 08 a5 61 eb 0d 1e 10 56 7f 5b 01

or in index form:

00 f9 3b 42 04 2b 7e fb 61 1e 03 d5 32 42 aa 05 18 05 aa 42 32 d5 03 1e 61 fb 7e 2b 04 42 3b f9 00

Using the above generator polynomial for encoding the data byte sequence {0, 1, . . . , 222} pro-

duces the following parity bytes:

2f bd 4f b4 74 84 94 b9 ac d5 54 62 72 12 ee b3 eb ed 41 19 1d e1 d3 63 20 ea 49 29 0b 25 ab cf

dvdisaster codec specification Version 1.01



RS(255,k) encoding parameters and examples page 33 of ??

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 ff 00 01 63 02 c6 64 6a 03 cd c7 bc 65 7e 6b 2a

10 04 8d ce 4e c8 d4 bd e1 66 dd 7f 31 6c 20 2b f3

20 05 57 8e e8 cf ac 4f 83 c9 d9 d5 41 be 94 e2 b4

30 67 27 de f0 80 b1 32 35 6d 45 21 12 2c 0d f4 38

40 06 9b 58 1a 8f 79 e9 70 d0 c2 ad a8 50 75 84 48

50 ca fc da 8a d6 54 42 24 bf 98 95 f9 e3 5e b5 15

60 68 61 28 ba df 4c f1 2f 81 e6 b2 3f 33 ee 36 10

70 6e 18 46 a6 22 88 13 f7 2d b8 0e 3d f5 a4 39 3b

80 07 9e 9c 9d 59 9f 1b 08 90 09 7a 1c ea a0 71 5a

90 d1 1d c3 7b ae 0a a9 91 51 5b 76 72 85 a1 49 eb

a0 cb 7c fd c4 db 1e 8b d2 d7 92 55 aa 43 0b 25 af

b0 c0 73 99 77 96 5c fa 52 e4 ec 5f 4a b6 a2 16 86

c0 69 c5 62 fe 29 7d bb cc e0 d3 4d 8c f2 1f 30 dc

d0 82 ab e7 56 b3 93 40 d8 34 b0 ef 26 37 0c 11 44

e0 6f 78 19 9a 47 74 a7 c1 23 53 89 fb 14 5d f8 97

f0 2e 4b b9 60 0f ed 3e e5 f6 87 a5 17 3a a3 3c b7

Table 2: Galois field logarithm table

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 01 02 04 08 10 20 40 80 87 89 95 ad dd 3d 7a f4

10 6f de 3b 76 ec 5f be fb 71 e2 43 86 8b 91 a5 cd

20 1d 3a 74 e8 57 ae db 31 62 c4 0f 1e 3c 78 f0 67

30 ce 1b 36 6c d8 37 6e dc 3f 7e fc 7f fe 7b f6 6b

40 d6 2b 56 ac df 39 72 e4 4f 9e bb f1 65 ca 13 26

50 4c 98 b7 e9 55 aa d3 21 42 84 8f 99 b5 ed 5d ba

60 f3 61 c2 03 06 0c 18 30 60 c0 07 0e 1c 38 70 e0

70 47 8e 9b b1 e5 4d 9a b3 e1 45 8a 93 a1 c5 0d 1a

80 34 68 d0 27 4e 9c bf f9 75 ea 53 a6 cb 11 22 44

90 88 97 a9 d5 2d 5a b4 ef 59 b2 e3 41 82 83 81 85

a0 8d 9d bd fd 7d fa 73 e6 4b 96 ab d1 25 4a 94 af

b0 d9 35 6a d4 2f 5e bc ff 79 f2 63 c6 0b 16 2c 58

c0 b0 e7 49 92 a3 c1 05 0a 14 28 50 a0 c7 09 12 24

d0 48 90 a7 c9 15 2a 54 a8 d7 29 52 a4 cf 19 32 64

e0 c8 17 2e 5c b8 f7 69 d2 23 46 8c 9f b9 f5 6d da

f0 33 66 cc 1f 3e 7c f8 77 ee 5b b6 eb 51 a2 c3 00

Table 3: Galois field anti-logarithm table

created: May 11, 2021 dvdisaster codec specification


